Convex Co-Embedding for Matrix Completion with Predictive Side Information

نویسنده

  • Yuhong Guo
چکیده

Matrix completion as a common problem in many application domains has received increasing attention in the machine learning community. Previous matrix completion methods have mostly focused on exploiting the matrix low-rank property to recover missing entries. Recently, it has been noticed that side information that describes the matrix items can help to improve the matrix completion performance. In this paper, we propose a novel matrix completion approach that exploits side information within a principled co-embedding framework. This framework integrates a low-rank matrix factorization model and a label embedding based prediction model together to derive a convex co-embedding formulation with nuclear norm regularization. We develop a fast proximal gradient descent algorithm to solve this co-embedding problem. The effectiveness of the proposed approach is demonstrated on two types of real world application problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Document Embedding Method for News Classification

Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...

متن کامل

Multi-View Matrix Completion for Clustering with Side Information

In many clustering applications, real world data are often collected from multiple sources or with features from multiple channels. Thus, multi-view clustering has attracted much attention during the past few years. It is noteworthy that in many situations, in addition to the data samples, there is some side information describing the relation between instances, such as must-links and cannot-li...

متن کامل

High Rank Matrix Completion with Side Information

We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of lowdimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking ...

متن کامل

Regularization Paths with Guarantees for Convex Semidefinite Optimization

We devise a simple algorithm for computing an approximate solution path for parameterized semidefinite convex optimization problems that is guaranteed to be ε-close to the exact solution path. As a consequence, we can compute the entire regularization path for many regularized matrix completion and factorization approaches, as well as nuclear norm or weighted nuclear norm regularized convex opt...

متن کامل

Detection of perturbed quantization (PQ) steganography based on empirical matrix

Perturbed Quantization (PQ) steganography scheme is almost undetectable with the current steganalysis methods. We present a new steganalysis method for detection of this data hiding algorithm. We show that the PQ method distorts the dependencies of DCT coefficient values; especially changes much lower than significant bit planes. For steganalysis of PQ, we propose features extraction from the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017